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We present symmetry properties of the lattice vibrations of graphene nanoribbons with pure armchair
�AGNRs� and zigzag edges �ZGNRs�. In nonsymmorphic nanoribbons, the phonon modes at the edge of the
Brillouin zone are twofold degenerate whereas the phonon modes in symmorphic nanoribbons are nondegen-
erate. We identified the Raman-active and infrared-active modes. We predict 3N and 3�N+1� Raman-active
modes for N-ZGNRs and N-AGNRs, respectively �N is the number of dimers per unit cell�. These modes can
be used for the experimental characterization of graphene nanoribbons. Calculations based on density-
functional theory suggest that the frequency splitting of the LO and TO modes in AGNRs �corresponding to the
E2g mode in graphene� exhibits characteristic width and family dependence. Further, all graphene nanoribbons
have a Raman-active breathinglike mode, the frequency of which is inversely proportional to the nanoribbon
width and thus might be used for experimental determination of the width of graphene nanoribbons.
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I. INTRODUCTION

Graphene, a single layer of carbon atoms, attracted tre-
mendous attention for both theoretical and experimental
studies. Its unique properties as a two-dimensional crystal
make it a fascinating model system for fundamental studies
of condensed-matter physics while its remarkable electronic
and transport properties and the available fabrication by
lithographic processes are promising for future application in
nanoelectronic devices, e.g., ballistic room-temperature tran-
sistors. However, defect-free and unpatterned graphene is a
zero-gap semiconductor and is thus unsuitable for use in
novel electronic devices that require precise control over car-
rier type and transport. In this context, graphene nanoribbons
�GNRs�, narrow stripes of graphene, have evolved from
model systems for the investigation of edge effects in
graphene and graphite1 into promising materials in their own
right. While those nanoribbons possess similarly outstanding
properties as graphene, edge effects such as the quantum
confinement of the electronic wave functions in sufficiently
narrow nanoribbons can result in the opening of a band gap
in the electronic structure, exhibiting a characteristic depen-
dence on chirality and nanoribbon width.2–7 Furthermore,
they give rise to interesting magnetic properties in graphene
nanoribbons with zigzag-shaped edges �ZGNRs�.1,6,8–13

Lattice vibrations have a significant effect on the transport
of valence electrons in graphene-related materials due to a
strong electron-phonon coupling.14 Therefore, the investiga-
tion of vibrational properties of graphene nanoribbons is of
great interest for the physical understanding of those struc-
tures. So far, there are only a few reports addressing this
topic, the most of which focus on edge-localized phonons in
armchair graphene nanoribbons �AGNRs�.15,16 Kawai et al.17

and Malola et al.18 predict the occurrence of a characteristic
Raman peak at a frequency about 2000 cm−1 for nonhydro-
genized armchair nanoribbons due to edge-related vibrations.
Zhou et al.19 calculated the lattice vibrations at the � point of
various AGNRs and ZGNRs and found a Raman-active pho-
non mode of width-dependent frequency, similar to the radial
breathing mode �RBM� in carbon nanotubes �CNTs�. These

insights could prove to be useful for characterization pur-
poses. Yamada et al.20 used a molecular approach to derive
the full phonon dispersions of small AGNRs and ZGNRs by
zone folding of the calculated phonons of polyaromatic hy-
drocarbons of suitable sizes and thus were able to relate mo-
lecular vibrations and phonons in crystals.

However, to the best of our knowledge, no systematic
work on the symmetry properties of the phonons in GNRs
has been reported so far. The use of crystal symmetries is a
versatile instrument in solid-state physics, e.g., for the theo-
retical investigation and understanding phonon dispersion,
electronic band structure and optical activity, which are ruled
by symmetry and selection rules. In this sense, not only edge
effects but also the different symmetry in graphene nanorib-
bons compared to graphene and CNTs could be responsible
for differences in electronic and vibrational properties. More-
over, symmetry-based selection rules for optical methods,
such as Raman and infrared �IR� spectroscopy, will help to
predict and understand experimental results.

In this work, we present the symmetry properties of
graphene nanoribbons with pure armchair and zizgag edges.
We use group theoretical methods to derive the full dynami-
cal representations of AGNRs and ZGNRs, describing the
full symmetry properties of their phonon spectra, and discuss
Raman- and infrared-active modes. Further, we compare our
results with first-principles density-functional theory calcula-
tions of the nanoribbon phonons from previous work.21

II. CALCULATIONS

The calculations of phonon frequencies of GNRs were
performed with the computational package SIESTA,22,23 utiliz-
ing a density-functional theory approach in the local-density
approximation form.24 Pseudopotentials were generated with
the Troullier-Martins scheme.25 The valence electrons were
described by a double-� basis set plus an additional polariz-
ing orbital. The localization of the basis followed the stan-
dard split scheme and was controlled by the energy shift, an
internal SIESTA parameter, which we set to a value of 50
meV. Integrations in real space were performed on a grid
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with a fineness of 0.08 Å, which can represent plane waves
up to an energy of 270 Ry. 30 k points along the reciprocal-
lattice vector were used to approximate integrations in recip-
rocal space. The space between periodic nanoribbon images
in our case was at least 20 Å in order to prevent interaction
between them. We fully relaxed the atomic positions of both
AGNRs and ZGNRs until atomic forces were less than
0.01 eV /Å. The phonon calculations were performed by ap-
plying the finite difference method.26 We used a supercell
approach with a 9�9�1 supercell, the above parameters for
cutoff energy and basis set and a grid of 3�3�1 k points to
calculate the phonon dispersion of graphene. In order to
achieve a better comparability between theory and experi-
ment, all frequencies were scaled by a constant factor of c
=0.974 to match the calculated frequency of the degenerate
E2g modes in graphene �1622 cm−1� with the experimental
value of 1580 cm−1.27

III. RESULTS AND DISCUSSION

A. Symmetry properties

In this section, we discuss the determination of the irre-
ducible representations that correspond to the phonons of a
given nanoribbon. As graphene nanoribbons are quasi-one-
dimensional crystals and possess translational periodicity in
only one direction, the description of their symmetry proper-
ties can be done using line groups.28–31 Due to the periodicity
of the crystal, all combinations of point-group symmetry el-
ements, i.e., rotations, mirror planes, and inversion symme-
try, with translations that leave the crystal invariant, are ele-
ments of the crystal symmetry group and thus elements of
the line group L. The action of a symmetry transformation

Ri = �Qi�� + �i� � L �1�

on an arbitrary vector r of the nanoribbon is then a transfor-
mation of r by the point symmetry operation Qi with a suc-
cessive rigid translation by ��+�i�a, i.e.,

�Qi�� + �i�r = Qir + �� + �i�a ,

where � is an arbitrary integer and denotes a translation by a
multiple of the lattice vector a and �i� �0;1� denotes a trans-
lation by a fraction of a.

A phonon disturbs an underlying crystal by displacing the
crystal atoms by a small amount. The representation of the
phonons �phon is thus given by the direct product of the
equivalence representation �eq, which mirrors the symmetry
properties of the nanoribbon, and the representation �vec of
an arbitrary polar vector �representing the displacement of
the phonon�. It can be decomposed into irreducible represen-
tations, i.e.,

�phon = �eq
� �vec = �

j

aj� j , �2�

where aj is the number of each irreducible representation in
�phon. Only those lattice vibrations are normal modes which
are compatible with the irreducible representations of �phon.
The symmetry properties of the phonons with wave vector k
can be extracted by decomposing the equivalent representa-

tions �k
eq and �k

vec and applying Eq. �2�. The characters of the
equivalence representation for the symmetry operation Ri are
given by

�k
eq�Ri� = eik·��+�i�a�

j

���Qi��+�i�rj,rj�
eiK·rj , �3�

where the delta function � is 1 for atoms that are shifted by
the symmetry operation Ri from the position r j to the posi-
tion of an equivalent atom, and 0 otherwise. The exponential
function in the sum adds a phase factor for phonons with
wave vectors k, for which Qik=k+K, where K is a
reciprocal-lattice vector. In case of nanoribbons, K= 2	

a ez for
k= 	

a and 0 for all other k vectors, including the � point.

1. Phonons at the � point

The symmetry properties of graphene nanoribbons depend
on whether the number of dimers per unit cell N is even or
odd. As visible in Figs. 1 and 2, the point-group components
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FIG. 1. �Color online� Symmetry operations �Qi ��+�� for arm-
chair nanoribbons with �a� an even number N of dimers per unit cell
�8-AGNR� and �b� odd number N of dimers �7-AGNR�. The opera-
tions �E � t� and �
xz � t�, which transform each atom in the unit cell
�thick gray lines� onto itself or an equivalent atom in another unit
cell, are not shown. Arrows denote twofold rotations about the x, y,
and z axes, dashed lines are mirror or glide planes. One dimer is
emphasized by a red �thin gray� line above the unit cell.

(C |τ)2
z(σ |τ)

(C |τ)2
x

(C |τ)2
y

(C |τ+0.5)2(σ |τ+0.5)yz

(C |τ)2
x

(σ |τ)xy

(C |τ+0.5)2
y

(a) (b)

a

0.5a

z
x

y

yz

(σ |τ)xy

z

FIG. 2. �Color online� Symmetry operations �Qi ��+�� for zig-
zag nanoribbons with �a� an odd number N of dimers per unit cell
�5-ZGNR� and �b� an even number N of dimers �4-ZGNR�. As for
Fig. 1, �E ��� and �
xz ��� are not shown. The same notation as in
Fig. 1 is used.
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Qi of the symmetry operations �Qi ��i+���L of all nanorib-
bons are three twofold rotations C2

x, C2
y, and C2

z and three
mirror operations 
xy, 
xz, and 
yz. This includes a point
inversion I=
xyC2

z . Therefore, the factor group, i.e., the
group of symmetry operations Ri= �Qi ��i�, neglecting the
translations by integer multiples of the lattice vector a, is
isomorphic to the point group D2h.

For N-AGNRs with odd N and N-ZGNRs with even N, �i
can be set to zero for all symmetry operations Ri, see Fig.
1�b� and Fig. 2�b�. These nanoribbons belong to the symmor-
phic line group L2 /mmm. Only atoms transformed onto
equivalent atoms by the symmetry operations �Qi �0� contrib-
ute to the equivalence representation and, using the character
tables for the line group L2 /mmm �see Appendix A, Table I�,
we obtain

�A,odd N
eq,k=0 =

N + 1

2
�0A0

+
� 0A0

−� �
N − 1

2
�0A1

+
� 0A1

−� ,

�Z,even N
eq,k=0 = N�0A0

+
� 0A1

+� ,

�k=0
vec = 0A0

−
� 0A1

+
� 0A1

−,

where �A and �Z denote representations for AGNRs and
ZGNR, respectively. The line-group notation �LGN� for the
irreducible representations follows Refs. 29 and 30.

The atomic displacements of corresponding atoms in dif-
ferent unit cells are equal for phonons with k=0. In this case,
we can express the dynamical representations of the phonons
by means of irreducible representations of the point group
D2h. �For conversion of the line-group notation into the mo-
lecular notation �MN� of irreducible representations of point
groups, see Appendix A, Table I.� Equation �2� then yields

�A,odd N
phon,k=0 = N�Ag � B1u � B2g � B3u� �

N + 1

2
�B2u � B3g�

�
N − 1

2
�Au � B1g� , �4�

�Z,even N
phon,k=0 = N�Ag � B1u � B2g � B3u � B1g � B2u� . �5�

As all components for both AGNRs and ZGNRs are one
dimensional, there are no systematically degenerate phonon
modes at the � point.

In case of armchair nanoribbons with even N and zigzag
nanoribbons with odd N, an additional fractional translation
with v=0.5 is needed for some symmetry operations Ri to
maintain crystal symmetry. These nanoribbons thus belong to
the nonsymmorphic line group L21 /mcm �Appendix A,
Table II�. In case of armchair nanoribbons, the equivalence
representation changes compared to odd-N-AGNRs due
to the fact that the nanoribbon axis does not contain any
carbon atoms, see Fig. 1�a�. This results in �A,even N

eq,k=0 �C2
z�

TABLE I. Characters of the irreducible representations of the symmorphic group L2 /mmm for the k points k= �0; 	

a �. For 0�k�
	

a ,
representations for k and −k generate two-dimensional representations k

−kEX whereas the representations for k=0 and k= 	

a are one dimen-
sional. �0=2 cos�k�a�. The first column shows the relevant basis functions for each k for the purposes of this paper. The irreducible
representations of the symmetry group L2 /mmm for different k points appear in two different notations in the second column. On the left side
is the line-group notation �LGN�, on the right side is the molecular notation �MN�, which is only applicable for phonons at the � point.

Basis LGN MN �E ��� �C2
x ��� �C2

y ��� �C2
z ��� �i ��� �
yz ��� �
xz ��� �
xy ���

z 0A0
+ Ag 1 1 1 1 1 1 1 1

0A0
− B1u 1 −1 −1 1 −1 1 1 −1

0B0
+ B1g 1 −1 −1 1 1 −1 −1 1

0B0
− Au 1 1 1 1 −1 −1 −1 −1

x 0A1
+ B3u 1 1 −1 −1 −1 −1 1 1

0A1
− B2g 1 −1 1 −1 1 −1 1 −1

y 0B1
+ B2u 1 −1 1 −1 −1 1 −1 1

0B1
− B3g 1 1 −1 −1 1 1 −1 −1

z k
−kEA0

�0��� 0 0 �0��� 0 �0��� �0��� 0

k
−kEB0

�0��� 0 0 �0��� 0 −�0��� −�0��� 0

x k
−kEA1

�0��� 0 0 −�0��� 0 −�0��� �0��� 0

y k
−kEB1

�0��� 0 0 −�0��� 0 �0��� −�0��� 0

z 	/aA0
+ �−1�� �−1�� �−1�� �−1�� �−1�� �−1�� �−1�� �−1��

	/aA0
− �−1�� −�−1�� −�−1�� �−1�� −�−1�� �−1�� �−1�� −�−1��

	/aB0
+ �−1�� −�−1�� −�−1�� �−1�� �−1�� −�−1�� −�−1�� �−1��

	/aB0
− �−1�� �−1�� �−1�� �−1�� −�−1�� −�−1�� −�−1�� −�−1��

x 	/aA1
+ �−1�� �−1�� −�−1�� −�−1�� −�−1�� −�−1�� �−1�� �−1��

	/aA1
− �−1�� −�−1�� �−1�� −�−1�� �−1�� −�−1�� �−1�� −�−1��

y 	/aB1
+ �−1�� −�−1�� �−1�� −�−1�� −�−1�� �−1�� −�−1�� �−1��

	/aB1
− �−1�� �−1�� −�−1�� −�−1�� �−1�� �−1�� −�−1�� −�−1��
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=�A,even N
eq,k=0 �
yz�=0. In ZGNRs however, the altered atomic

structure has no effect on �eq,k=0, as the characters do not
change. The equivalence representations are then

�A,even N
eq,k=0 = N�0A0

+
� 0A1

−� ,

�Z,odd N
eq,k=0 = �Z,even N

eq,k=0 ,

�k=0
vec = 0A0

−
� 0A1

+
� 0A1

−.

Applying Eq. �2� results in the dynamic representation for
the �-point phonons of N-AGNRs with even N and ZGNRs
with odd N,

�A,even N
phon,k=0 = N�Ag � B1u � B2g � B3u�

�
N

2
�Au � B1g � B2u � B3g� , �6�

�Z,odd N
phon,k=0 = N�Ag � B1u � B2g � B3u � B1g � B2u� . �7�

Note that the equivalence representations for odd-N- and
even-N-ZGNRs are equal, which implies that the symmetry
properties of phonons at the � point are the same for all
ZGNRs.

2. Phonons with wave vector kÅ0

The same approach as for phonons at the � point is ap-
plicable for general lattice vibrations as well, with different
representations for the phonon wave vectors �vec,k. We de-
rived the full dynamical representations for the phonons of
nanoribbons with armchair and zigzag edges, respectively,
which are listed in Appendix B.

The wave vectors k and −k are equivalent and thus repre-
sentations for k� �0, 	

a � and −k� �− 	
a ,0� are two-

dimensional representations,30 which have to be compatible

with the representations at the � point. These compatibility
relations can be used to construct the representations of the
phonons with 0� �k�� 	

a . This is done by merging those rep-
resentations of the phonons at the � point that are equivalent
under the lowered symmetry for 0� �k�� 	

a . The displace-
ment of the nanoribbon atoms due to a phonon with a wave
vector k and a frequency � is given by


�x,y,z,t� = A�x,y,x0,y0,z0,t0�expi�k�z−z0�−��t−t0��, �8�

where x0, y0, and z0 are the coordinates of the origin and t0 is
the initial time. Equation �8� indicates that rotations around
the x and the y axis ��C2

x ��+�Cx� , �C2
y ��+�Cy�� and the re-

flection through the xy plane �
xy ��+�
xy� are no symmetry
operations for phonons with wave vectors 0� �k�� 	

a . Also,
those phonons obviously possess no inversion symmetry
�I ��+��, i.e., the parity of the �-point representations van-
ishes when they are extended into the Brillouin zone. As a
result of the lowered symmetry and the equivalence of k and
−k, the representations 0A0

+ and 0A0
−, which are equivalent for

the symmetry operations �C2
z ��+�Cz�, �
xz ��+�
xz�, and

�
yz ��+�
yz�, induce the two-dimensional representation

k
−kEA0

. In the same way, the representations 0A1
+ and 0A1

− in-
duce the representation k

−kEA1
. 0B0

� and 0B1
� induce the rep-

resentations k
−kEB0

and k
−kEB1

, respectively �refer to Appendix
A�. Thus, the dynamical representations can also be derived
from compatibility relations to the �-point phonons instead
of using Eq. �2�.

For symmorphic nanoribbons, the compatibility relations
can be used for phonons at the edge of the Brillouin zone.
There, the representations are one dimensional and equiva-
lent to the eight representations at the � point. Pairs of the
two-dimensional representations for k= �0, 	

a �, k
−kEXy

, trans-
form into one-dimensional representations of the same type,
one representation of even parity �Xy

+� and one with odd par-
ity �Xy

−�, respectively. Thus, there is no systematic degen-

TABLE II. Characters of the irreducible representations of the nonsymmorphic group L21 /mcm for the k points k= �0; 	

a �. As for the
symmorphic counterpart �Table I�, the representations for 0�k�

	

a are two dimensional so are the representations for k= 	

a , which are
generated by k

−kEA0
, k

−kEA1
and k

−kEB0
, k

−kEB1
�Ref. 30�. �0=2 cos�k�a� and �1/2=2 cos�k��+ 1

2 �a�.

Basis LGN MN �E ��� �C2
x ��� �C2

y ��+ 1
2 � �C2

z ��+ 1
2 � �i ��+ 1

2 � �
yz ��+ 1
2 � �
xz ��� �
xy ���

z 0A0
+ Ag 1 1 1 1 1 1 1 1

0A0
− B1u 1 −1 −1 1 −1 1 1 −1

0B0
+ B1g 1 −1 −1 1 1 −1 −1 1

0B0
− Au 1 1 1 1 −1 −1 −1 −1

x 0A1
+ B3u 1 1 −1 −1 −1 −1 1 1

0A1
− B2g 1 −1 1 −1 1 −1 1 −1

y 0B1
+ B2u 1 −1 1 −1 −1 1 −1 1

0B1
− B3g 1 1 −1 −1 1 1 −1 −1

z k
−kEA0

�0��� 0 0 �1/2��� 0 �1/2��� �0��� 0

k
−kEB0

�0��� 0 0 �1/2��� 0 −�1/2��� −�0��� 0

x k
−kEA1

�0��� 0 0 −�1/2��� 0 −�1/2��� �0��� 0

y k
−kEB1

�0��� 0 0 �1/2��� 0 �1/2��� �0��� 0

	/aEA0

A1 2�−1�� 0 0 0 0 0 2�−1�� 0

	/aEB0

B1 2�−1�� 0 0 0 0 0 −2�−1�� 0
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eracy of phonon modes at the edge of the Brillouin zone for
symmorphic nanoribbons.

For nonsymmorphic nanoribbons, pairs of representations

k
−kEA0

and k
−kEA1

�k
−kEB0

and k
−kEB1

� induce two-dimensional
representations 	/aEA0

A1 �	/aEB0

B1� at k= 	
a . Consequently, in non-

symmorphic nanoribbons, all phonon modes are twofold de-
generate at the edge of the Brillouin zone.

The symmetry-induced degeneracy of the phonon modes
at the Brillouin zone can be clearly seen in ab initio calcu-
lations of the full phonon dispersions of small-width nanor-
ibbons presented in previous work.21 We found that almost
all branches of the phonon dispersion of AGNRs with even N
and ZGNRs with odd N, i.e., the nonsymmorphic nanorib-
bons, are twofold degenerate at k= 	

a . No systematic degen-
eracy was found for the symmorphic nanoribbons, i.e.,
N-AGNRs with odd N. Corresponding results have been re-
ported by Yamada et al.20 These results were not understood
from simple zone-folding considerations. Here we have
shown that instead the degeneracy of phonon modes at the
Brillouin-zone edge is solely determined by the symmetry
properties of the nanoribbons. We refer to Fig. 9 in Ref. 21
and Figs. 3 and 9 in Ref. 20 for calculated phonon disper-
sions of various AGNRs and ZGNRs.

B. Raman-active modes

In this section, we will analyze which of the nanoribbon
phonon modes can be observed in a Raman experiment. Ra-
man scattering is inelastic scattering of light, where a change
in frequency of the scattered light occurs due to the creation
or the annihilation of Raman-active phonons in the material.
The polarization and the intensity of the scattered light are
linked to the incident light by the Raman tensor R; the scat-
tering intensity is proportional to

�es · R · ei�2,

where ei and es denote the polarization of incoming and scat-
tered light, respectively. As the Raman tensor is a second-
rank tensor, its symmetry �Raman is given by the direct prod-
uct of the representations of a polar vector, �vec,k=0 and
�vec,k=0�

, i.e.,

�Raman = �vec,k=0
� �vec,k=0�

= Ag � B1g � B2g � B3g. �9�

Only the phonon components contained in the representation
of the Raman tensor are Raman active. All Raman-active
phonon modes are even �subscript g� under inversion.

The polarization of the scattered light in relation to the
polarization of the incident light depends on the involved
Raman-active phonon, see Table III. In the case that a pho-
non with Ag symmetry is emitted or absorbed, the polariza-
tion of the scattered light is parallel to that of the incident
light. In case of B1g, incoming and scattered light are cross
polarized in the xy plane. Similarly, B2g and B3g change the
polarization of the incoming light in the xz plane and yz
plane, respectively.

In a former work, we showed that it is possible to classify
the �-point phonon modes of nanoribbons into six funda-
mental modes and 6�N−1� overtones, N−1 overtones for

each fundamental mode. The six fundamental modes are
similar to the six phonon branches at the � point of
graphene, thus they are of special interest. The symmetry
properties of the acoustic fundamental modes are equal for
all AGNRs and ZGNRs, and none of these modes is Raman
active. The longitudinal-acoustic phonon �0-LA�, which in-
duces an atomic displacement parallel to the nanoribbon
axis, has B1u symmetry. The representations of the
transverse-acoustic �0-TA� and the out-of-plane-acoustic fun-
damental mode �0-ZA� are B3u and B2u, respectively, for all
nanoribbons. In contrast, the representations of the three op-
tical fundamental modes are of even parity, and conse-
quently, these phonons are Raman active. For AGNRs, the
longitudinal-optical fundamental mode �0-LO� has Ag sym-
metry and can thus be observed only for zz polarization. The
transverse-optical �0-TO� and out-of-plane-optical modes
�0-ZO� have B2g and B3g symmetry, respectively, and are
forbidden in zz polarizaton. We therefore expect that the
three optical modes can be observed separately by
polarization-dependent Raman measurements.

For ZGNRs, the representations of the 0-LO and 0-TO are
interchanged compared to AGNRs �i.e., 0-LO: B2g, 0-TO:
Ag� and the 0-ZO has B1g symmetry. The reason for this is
the difference in structure between AGNRs and ZGNRs. In
ZGNRs, the twofold rotation C2

x around the x axis of the
nanoribbon and the mirror plane 
xy leave carbon atoms in-
variant, in contrast to AGNRs. In this sense, there is a simple
correspondence between ZGNRs and armchair nanotubes,
where the TO is fully symmetric and Raman allowed in zz
configuration, and between AGNRs and zigzag nanotubes,
where the LO phonon is fully symmetric. Note that in AG-
NRs and ZGNRs, both LO and TO are Raman active, though
in different scattering geometries whereas in zigzag and arm-
chair carbon nanotubes, the TO and LO, respectively, are
Raman inactive.32 For characterization of nanoribbons or de-
termination of the graphene crystallographic direction, the
different LO and TO selection rules in AGNRs and ZGNRs
might be useful.

As shown in Ref. 21, there are three families of armchair
nanoribbons regarding the �-point frequencies of the 0-LO
and the 0-TO. This corresponds to the behavior of the elec-
tronic properties,5 where AGNRs were found to be quasim-
etallic or semiconducting, depending on the number of
dimers in the unit cell. The magnitude of the band gap can be
classified into distinct families. This family behavior is also
found for the LO-TO splitting, see Fig. 3. The quasimetallic
nanoribbons of the �N=3p+2� family possess the largest
splitting of the 0-LO and the 0-TO, which indicates a Kohn
anomaly at the � point for these nanoribbons. The frequency

TABLE III. Allowed Raman-scattering configurations.

Phonon symmetry
Allowed scattering configuration

�ei ,es�

Ag �z ,z�
B1g �x ,y�
B2g �x ,z�
B3g �y ,z�
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splitting quickly decreases with increasing nanoribbon width
w. In comparison, the nanoribbons of the �N=3p� family,
which are semiconducting with intermediately sized band
gaps, exhibit a similar but weaker drop in frequency split-
ting. �3p+1�-AGNRs, possessing the largest band gaps, ex-
hibit only a weak dependence of the LO-TO splitting on the
nanoribbon width. We found an overall small decrease from
14 cm−1 for a 4-AGNR to 11 cm−1 for a 22-AGNR.

1. Raman activity of overtones

An inspection of the symmetry properties of overtones
shows that all overtones with an even vibrational order pos-
sess the same symmetry properties as their respective funda-
mental modes �at the � point�, e.g., 0-LO, 2-LO, 4-LO, etc.,
in an AGNR are all of Ag symmetry. All these modes have in
common that there is no vibrational “node” coinciding with
the nanoribbon axis, see discussion in Ref. 21.

In the same way, the overtones with an odd vibrational
order of a particular fundamental mode possess the same
irreducible representation, and there is always a vibrational
node on the xz plane of the nanoribbon. A major point re-
garding the Raman activity is the inversion symmetry of the
phonons. The acoustic fundamental modes and their over-
tones of even order are antisymmetric with respect to inver-
sion and are thus not Raman active. The vibrational node on
the nanoribbon axis in case of odd-order overtones of the
acoustic modes, however, induces an inversion symmetry.
Consequently, those phonons are Raman active, see Table
IV. For the optical phonons, overtones of even vibrational
order possess even parity under inversion. However, the

overtones with odd vibrational order possess odd parity un-
der inversion and consequently are not Raman active.

A nanoribbon with an even number N of dimers per unit
cell has N

2 −1 overtones of even vibrational order and N
2 over-

tones of odd vibrational order for each fundamental mode. In
case of a nanoribbon with an odd number of dimers, there are
N−1

2 overtones of even and N−1
2 overtones of odd vibrational

order. Thus, we would expect to find 3N Raman-active
phonons in case of nanoribbons with even N and 3�N+1�
Raman-active phonons in case of nanoribbons with an odd
number N of dimers per unit cell. The Raman-active modes
and their symmetries are summarized in Table IV.

Regarding spectroscopic characterization we note that the
B3g symmetry is found only for AGNRs for the out-of-plane-
optical fundamental mode and its overtones. This could pro-
vide a way to experimentally distinguish armchair and zig-
zag edges in nanoribbons by cross-polarized Raman
measurements, see Tables III and IV. However, it will be
experimentally difficult to perform a measurement with light
polarization perpendicular to the nanoribbon plane.

2. Breathinglike mode in nanoribbons

Another promising phonon mode for characterization pur-
poses is the first overtone of the transverse-acoustic funda-
mental mode �1-TA�. Here, all atoms of one half of the na-
noribbon move in-phase and in opposite direction than the
atoms in the other half, as shown in Fig. 4�b�. This results in
a breathinglike expansion and compression of the nanorib-
bon and shows great similarities to the RBM of carbon nano-
tubes. The displacement pattern of this phonon mode is sym-
metric under inversion, thus it is Raman active. The
symmetry of the mode is Ag �refer to Table IV�. Figure 4�a�
shows the calculated frequencies of breathinglike modes
�BLMs� of AGNRs and ZGNRs of various widths. The fre-
quencies of the breathinglike modes display a strong depen-
dence on the nanoribbon width and is nearly independent of
the edge type of the nanoribbon, i.e., the BLM has almost the
same frequency for AGNRs and ZGNRs of equal widths.
Small deviations are found for the smallest nanoribbons.

We assigned wavelengths and wave vectors to the BLMs
of various nanoribbons and mapped them onto the phonon
dispersion of graphene. We showed in a previous work that
the �-point phonons of AGNRs can be unfolded to reproduce
the �KM direction in graphene while vibrations of ZGNRs
reproduce the phonon dispersion in �M direction, respec-
tively. In this way, the BLMs of nanoribbons of increasing
width should move along the LA branch of graphene toward

TABLE IV. Symmetries of the Raman-active overtones in AGNRs and ZGNRs. Due to inversion sym-
metry, the Raman-active overtones of optical fundamental modes are all of even vibrational order. Similarly,
the Raman-active “acoustic” overtones possess an odd vibrational order.

n even n odd

n -LO n -TO n -ZO n -LA n -TA n -ZA

AGNR Ag B2g B3g B2g Ag B1g

ZGNR B2g Ag B1g B2g Ag B1g
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FIG. 3. �Color online� Difference in frequency between the
transverse-optical �0-TO� and the longitudinal-optical �0-LO� fun-
damental modes in armchair nanoribbons. The size of the LO-TO
splitting is noticeable different for AGNRs of different families.
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the � point in the phonon dispersion. Figure 5 shows such a
mapping of the BLMs onto the phonon dispersion of
graphene. It can be seen that the BLMs of AGNRs and
ZGNRs exhibit deviations from the LA branch for smaller
nanoribbons but comply very well in the case of larger nan-
oribbons. The agreement of our calculated BLM frequencies
with the linear part of the graphene LA branch enables us to

derive a formula for estimation of the BLM frequency of
larger nanoribbons. In the linear part of the branch, the dis-
persion is given by

� = a
2	

�
,

where � is the wavelength of the vibration and a
=1025.6 Å cm−1 is the sound velocity in our calculated pho-
non dispersion of graphene. The wavelength of the BLM is
�=2w for all nanoribbons, where w is the nanoribbon width.
The frequency of the BLM of not too narrow nanoribbons
can then be estimated by

�BLM =
a	

w
=

3222 Å cm−1

w
. �10�

In this zone-folding model, the BLM of a nanoribbon with a
width of 10 nm would then have a frequency of approxi-
mately 32 cm−1. We expect that the agreement of the BLM
frequencies with the LA branch of graphene further improves
for nanoribbons of increasing width. It is thus likely that the
Eq. �10� can be used for estimating the BLM frequencies of
nanoribbons with realistic widths w�10 nm.

C. Infrared activity

Another spectroscopic method for determining vibrational
properties is the excitation of phonons by absorption of in-
frared light. For a phonon to be infrared active, it has to
change the permanent dipole moment in the solid and thus be
able to couple with an electromagnetic field. The representa-
tion �IR of IR-active phonons thus transforms like the repre-
sentation of a polar vector �vec, i.e.,

�IR = �vec = B1u � B2u � B3u. �11�

The u indicates that the decomposition of �IR consists of
only “odd” irreducible representations. Consequently, for na-
noribbons, all �-point phonons that are not Raman active are
IR active, i.e., the three acoustic fundamental modes and the
respective overtones of even vibrational order and the odd
overtones of optical fundamental modes. Thus, we would
expect to find 3N IR active phonons for all nanoribbons, see
Table V.

IV. CONCLUSION

We used group theory to study the symmetry properties of
graphene nanoribbons with pure armchair- and zigzag-type
edges and derived the full dynamical representations for
these nanoribbons. The different symmetry properties of the
phonons of nanoribbons with symmorphic and nonsymmor-
phic symmetry groups mainly manifest themselves at the
edge of the Brillouin zone. Here, all phonon modes of non-
symmorphic nanoribbons are twofold degenerate whereas
the phonon modes of symmorphic nanoribbons are always
nondegenerate. These theoretical derivations explain results
from previous ab initio calculations,21 where we calculated
the full phonon dispersions of small-width AGNRs and
ZGNRs. They also explain the differences in degeneracy at
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FIG. 4. �Color online� �a� Frequency of the BLM in armchair
�red squares� and zigzag �green circles� nanoribbons of different
widths w. The solid line is an approximation for the BLM frequency
from zone folding of the linear part of the LA branch in graphene
�refer to Fig. 5�. This yields �BLM= a	

w , where a=1025.6 Å cm−1 is
the sound velocity in graphene. �b� Displacement pattern of the
atoms in the nanoribbon unit cell due to the BLM. The two halves
of the unit cell are oscillating in opposite phase.

FIG. 5. �Color online� Mapping of the BLM frequencies of na-
noribbons of various widths onto the phonon dispersion of
graphene. As the BLM is the first overtone of the nanoribbon TA
fundamental mode, the corresponding wave vector decreases with
increasing nanoribbon width. Due to different orientation of the
nanoribbon and the graphene lattice, the nanoribbon TA corre-
sponds to the graphene LA. The BLM generally lies on the
graphene LA branch, except for nanoribbons of very small widths
�=larger wave vectors�. The calculated nanoribbon frequencies have
been rescaled by the same constant factor as the graphene
frequencies.
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the edge of the Brillouin zone between graphene nanorib-
bons and carbon nanotubes. Using the dynamical representa-
tions at the � point, we predict the phonon spectra of
graphene nanoribbons to consist of 3N Raman-active and 3N
infrared-active vibrational modes. Some Raman-active
modes are promising candidates for experimental character-
ization of nanoribbons. Our calculations of phonon frequen-
cies using density-functional theory suggest that the fre-
quency splitting of the longitudinal-optical and the
transverse-optical fundamental mode �corresponding to the
TO and the LO of graphene at the � point� exhibits a char-
acteristic family dependence, with quasimetallic nanoribbons
possessing the largest splittings. Further, we found a Raman-
active BLM with a strong width dependence, similar to the
radial breathing mode in carbon nanotubes. Our results might
prove to be useful for future experimental investigations of
the vibrational properties of graphene nanoribbons.
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APPENDIX A: CHARACTER TABLES

Here, we show the character tables for the irreducible
representations of the two symmetry groups that were rel-
evant for this paper, the symmorphic L2 /mmm group and the
nonsymmorphic L21 /mcm group. Both character tables were
adapted from previous work by Božović et al.30 The corre-
sponding matrices can be found in the same work.

APPENDIX B: DYNAMICAL REPRESENTATIONS OF THE
PHONONS IN ARMCHAIR- AND ZIGZAG-EDGED

GRAPHENE NANORIBBONS

Here, we report the full dynamical representations of the
phonons in ideal armchair- and zigzag-edged nanoribbons, as
follows by Eq. �2�,
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phon = N�0A0
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� 0A0

−
� 0A1

−
� 0A1

+�

�
N + 1

2
�0B1
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� 0B1
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−
� 0B0
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� �
k

�2N�k
−kEA0

� 2k
−kEA1

�

� �N − 1�k
−kEB0

� �N + 1�k
−kEB1

�

� N�	/aA0
+

� 	/aA0
−

� 	/aA1
+

� 	/aA1
−�

�
N + 1

2
�	/aB1

+
� 	/aB1

−� �
N − 1

2
�	/aB0

+
� 	/aB0

−� ,

�B1�

�A,even
phon = N�0A0

+
� 0A0

−
� 0A1

−
� 0A1

+�

�
N

2
�0B0

−
� 0B0

+
� 0B1

+
� 0B1

−�

� N�
k

�2k
−kEA0

� 2k
−kEA1

� k
−kEB0

� k
−kEB1

�

� N�2	/aEA0

A1 � 	/aEB0

B1� , �B2�

�Z,even
phon = N�0A0

+
� 0A0

−
� 0A1

−
� 0A1

+
� 0B0

+
� 0B1

+�

� N�
k

�2k
−kEA0

� 2k
−kEA1

� k
−kEB0

� k
−kEB1

�

� N�	/aA0
+

� 	/aA0
−

� 	/aA1
+

� 	/aA1
−

� 	/aB0
+

� 	/aB1
+� , �B3�

�Z,odd
phon = N�0A0

+
� 0A0

−
� 0A1

−
� 0A1

+
� 0B0

+
� 0B1

+�

� N�
k

�2k
−kEA0

� 2k
−kEA1

� k
−kEB0

� k
−kEB1

�

� N�2	/aEA0

A1 � 	/aEB0

B1� . �B4�

*rg403@cam.ac.uk
1 M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J.

Phys. Soc. Jpn. 65, 1920 �1996�.
2 M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett.

98, 206805 �2007�.
3 M. Ezawa, Phys. Rev. B 73, 045432 �2006�.
4 V. Barone, O. Hod, and G. Scuseria, Nano Lett. 6, 2748 �2006�.
5 Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97,

TABLE V. Symmetries of the IR-active overtones in AGNRs and ZGNRs. As all nanoribbons possess
inversion symmetry, only phonons that are not Raman active are infrared active.

n odd n even

n -LO n -TO n -ZO n -LA n -TA n -ZA

AGNR B3u B1u Au Au B3u B2u

ZGNR B1u B3u B2u B1u B3u B2u

GILLEN, MOHR, AND MAULTZSCH PHYSICAL REVIEW B 81, 205426 �2010�

205426-8

http://dx.doi.org/10.1143/JPSJ.65.1920
http://dx.doi.org/10.1143/JPSJ.65.1920
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevB.73.045432
http://dx.doi.org/10.1021/nl0617033
http://dx.doi.org/10.1103/PhysRevLett.97.216803


216803 �2006�.
6 T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and

F. Mauri, Phys. Rev. Lett. 101, 096402 �2008�.
7 A. V. Nikolaev, A. V. Bibikov, A. V. Avdeenkov, I. V. Bodrenko,

and E. V. Tkalya, Phys. Rev. B 79, 045418 �2009�.
8 K. Wakabayashi, M. Sigrist, and M. Fujita, J. Phys. Soc. Jpn. 67,

2089 �1998�.
9 K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev.

B 59, 8271 �1999�.
10 K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406

�2003�.
11 A. Yamashiro, Y. Shimoi, K. Harigaya, and K. Wakabayashi,

Phys. Rev. B 68, 193410 �2003�.
12 Y.-W. Son, M. L. Cohen, and S. Louie, Nature �London� 444,

347 �2006�.
13 H. Lee, Y.-W. Son, N. Park, S. Han, and J. Yu, Phys. Rev. B 72,

174431 �2005�.
14 S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K.

Geim, A. C. Ferrari, and F. Mauri, Nat. Mater. 6, 198 �2007�.
15 M. Igami, M. Fujita, and S. Mizuno, Appl. Surf. Sci. 130-132,

870 �1998�.
16 T. Tanaka, A. Tajima, R. Moriizumi, M. Hosoda, R. Ohno,

E. Rokuta, C. Oshima, and S. Otanic, Solid State Commun. 123,
33 �2002�.

17 T. Kawai, Y. Miyamoto, O. Sugino, and Y. Koga, Phys. Rev. B
62, R16349 �2000�.

18 S. Malola, H. Hakkinen, and P. Koskinen, Eur. Phys. J. D 52, 71
�2009�.

19 J. Zhou and J. Dong, Appl. Phys. Lett. 91, 173108 �2007�.
20 M. Yamada, Y. Yamakita, and K. Ohno, Phys. Rev. B 77,

054302 �2008�.
21 R. Gillen, M. Mohr, J. Maultzsch, and C. Thomsen, Phys. Rev. B

80, 155418 �2009�.
22 J. M. Soler, E. Artacho, J. Gale, A. Garcia, J. Junquera, and

P. Ordejoń, J. Phys.: Condens. Matter 14, 2745 �2002�.
23 P. Ordejón, E. Artacho, and J. M. Soler, Phys. Rev. B 53,

R10441 �1996�.
24 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 �1981�.
25 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 �1991�.
26 M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 3259 �1982�.
27 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri,

F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and
A. K. Geim, Phys. Rev. Lett. 97, 187401 �2006�.

28 M. Vujičić, I. Božović, F. Herbut, J. Phys. A 10, 1271 �1977�.
29 I. Božović, M. Vujičić, and F. Herbut, J. Phys. A 11, 2133

�1978�.
30 I. Božović and M. Vujičić, J. Phys. A 14, 777 �1981�.
31 M. Damnjanović and M. Vujičić, Phys. Rev. B 25, 6987 �1982�.
32 S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes:

Basic Concepts and Physical Properties �Wiley-VCH, Berlin,
2004�.

SYMMETRY PROPERTIES OF VIBRATIONAL MODES IN… PHYSICAL REVIEW B 81, 205426 �2010�

205426-9

http://dx.doi.org/10.1103/PhysRevLett.97.216803
http://dx.doi.org/10.1103/PhysRevLett.101.096402
http://dx.doi.org/10.1103/PhysRevB.79.045418
http://dx.doi.org/10.1143/JPSJ.67.2089
http://dx.doi.org/10.1143/JPSJ.67.2089
http://dx.doi.org/10.1103/PhysRevB.59.8271
http://dx.doi.org/10.1103/PhysRevB.59.8271
http://dx.doi.org/10.1103/PhysRevB.67.092406
http://dx.doi.org/10.1103/PhysRevB.67.092406
http://dx.doi.org/10.1103/PhysRevB.68.193410
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1103/PhysRevB.72.174431
http://dx.doi.org/10.1103/PhysRevB.72.174431
http://dx.doi.org/10.1038/nmat1846
http://dx.doi.org/10.1016/S0169-4332(98)00168-8
http://dx.doi.org/10.1016/S0169-4332(98)00168-8
http://dx.doi.org/10.1016/S0038-1098(02)00186-2
http://dx.doi.org/10.1016/S0038-1098(02)00186-2
http://dx.doi.org/10.1103/PhysRevB.62.R16349
http://dx.doi.org/10.1103/PhysRevB.62.R16349
http://dx.doi.org/10.1140/epjd/e2008-00256-2
http://dx.doi.org/10.1140/epjd/e2008-00256-2
http://dx.doi.org/10.1063/1.2800796
http://dx.doi.org/10.1103/PhysRevB.77.054302
http://dx.doi.org/10.1103/PhysRevB.77.054302
http://dx.doi.org/10.1103/PhysRevB.80.155418
http://dx.doi.org/10.1103/PhysRevB.80.155418
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1103/PhysRevB.53.R10441
http://dx.doi.org/10.1103/PhysRevB.53.R10441
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.26.3259
http://dx.doi.org/10.1103/PhysRevLett.97.187401
http://dx.doi.org/10.1088/0305-4470/10/8/005
http://dx.doi.org/10.1088/0305-4470/11/11/003
http://dx.doi.org/10.1088/0305-4470/11/11/003
http://dx.doi.org/10.1088/0305-4470/14/4/009
http://dx.doi.org/10.1103/PhysRevB.25.6987

